Instructor	Dr. Mahmoud Reda Taha, P. Eng Professor & Chair, Department of Civil Engineering Centennial Engineering Center: 3006 Tel: (505) 277-1258, e-mail: mrtaha@unm.edu
Lectures	Twice Weekly: Tuesday and Thursday 5:30 – 6:45 Centennial Engineering Center (CENT) 1026
References	 Lecture notes delivered in the class. Reference Book: PCI Design Handbook – 6th Edition Edward Nawy – Prestressed Concrete A Fundamental Approach
Office Hours	Tuesday & Thursday $1:00 - 3:00$ pm or by appointment. You can always communicate with me by email.
Learning Objectives	 After completing this course the student shall be able to 1- Explain principles of prestressed concrete mechanics 2- Compute stresses in prestressed concrete member. 3- Calculate prestress and post-tensioning losses. 3- Explain the load balance concept 4- Design of prestressed concrete elements including a- Determining the required amount of prestress strands b- Determining the prestress profile c- Check flexural and shear capacity of pc members d- Check anchorage zone requirements e- Check cracking and deflection 5- Design of prestress two way floor system.
Expected Outcomes (In accordance with Civil Engineering Departmental Goals)	 This course contributes to the following educational outcomes in the objectives of the CE Department: A familiarity with the modern tools for engineering analysis, including computers and sophisticated laboratory equipment. An ability to approach and solve engineering problems in a structured manner. Synthesis of knowledge from various sources to produce creative, cost-effective designs for civil engineering facilities. A commitment to become registered as professional engineers. An ability to communicate effectively, both in written and oral forms, as well as an ability to listen. A sensitivity to practice personal and professional ethics. A basic understanding of societal and environmental issues as they affect engineering decisions
Assignments	We will have 5 assignments accounting for 10% of the course grade <i>The following rules apply to all assignments:</i> - Assignments shall be delivered by the due date or will be marked of

a maximum of 50%.

- Assignments delayed for one week from due date will be rejected.

- **Course Project** A prestressed concrete design project is expected from <u>all students</u>. The project will include providing a design of a concrete structure including performing the basic design calculations and providing basic design drawings. *Projects are individual efforts and each student shall do one project*. Further details will be provided by the instructor.
- **Expected performance** Students are expected to be familiar with computer programs for structural analysis (e.g. SAP 2000 and/or ANSYS). Students shall also get familiar with engineering-programming environments such as MATLAB, MathCad and Excel. Examples in these programs will be used. It is the duty of the student to get familiar with these programs. Feel free to ask the instructor if you have questions in these programs.

Grading	Component	% Final Grade
	Assignments	10
	Mid Term 1	20
	Mid Term 2	20
	Course Project	20
	Final Exam	30

Lecture #	Date	Торіс
1	Jan. 13	Chapter 1: Introduction
2	Jan. 15	Chapter 1: Introduction
3	Jan. 20	Chapter 1: Introduction
4	Jan. 22	Chapter 2: Elastic Design
5	Jan. 27	Chapter 2: Elastic Design
6	Jan. 29	Chapter 2: Elastic Design
7	Feb. 3	Chapter 3: Prestress Losses
8	Feb. 5	Chapter 3: Prestress Losses
9	Feb. 10	Chapter 4: Exact Analysis
10	Feb. 12	Chapter 4: Exact Analysis
11	Feb. 17	Chapter 4: Exact Analysis
12	Feb. 19	FIRST MID-TERM (20 % of Total Grade)
13	Feb. 24	Chapter 5: Load Balance
14	Feb. 26	Chapter 5: Load Balance
15	March 3	Chapter 5: Load Balance
16	March 5	Chapter 6: Flexural Design
	March 10	Spring Break
	March 12	Spring Break
17	March 17	Chapter 6: Flexural Design
18	March 19	Chapter 7: Moment-Curvature
19	March 24	Chapter 7: Moment-Curvature
20	March 26	Chapter 8: Shear Behavior & Design
21	March 31	SECOND MID-TERM (20 % of Total Grade)
22	April 2	Chapter 8: Shear Behavior & Design
23	April 7	Chapter 8: Shear Behavior & Design
24	April 9	Chapter 9: Bond and Anchorage
25	April 14	Chapter 9: Bond and Anchorage
26	April 16	Chapter 10: Two Way Prestressed Floor Systems
27	April 21	Chapter 10: Two Way Prestressed Floor Systems
28	April 23	Chapter 10: Two Way Prestressed Floor Systems
29	April 30	Course Project Presentation
	May 5	TAKE HOME FINAL EXAM (30% of GRADE)
		9:00 am to 3: 00 pm

CE 506 Course Syllabus - Tentative Schedule