Instructor	Dr. Mahmoud Reda Taha, P. Eng		
(First Half)	Associate Professor & Regents' Lecturer		
	Centennial Engineering Center: 3037		
	Tel: 277-1258, e-mail: mrtaha@unm.edu		
Lectures	Lectures Three times Weekly:		
	Tuesday and Thursday 9:30 – 10:45 & Wednesday 2:00 – 3:50		
	Centennial Engineering Center 1026		
Textbooks	- Textbook: Reinforced Concrete: Mechanics and Design, 6 th Edition,		
	James G. MacGregor and James K. Wight, Prentice Hall, 2012		
	- ACI Building Code for Structural Concrete (ACI 318-11)		
	- Lecture notes delivered in the class.		
Lecture Notes	- Lecture notes will be distributed by the instructor		
Office Hours	Tuesday & Thursday $1:00 - 3:00$ or by appointment.		
	You can always communicate with me by email.		
Expected Outcomes	• This course contributes to the following educational outcomes		
(In accordance with	in the objectives of the CE Department:		
Civil Engineering	• A familiarity with the modern tools for engineering analysis,		
Departmental	including computers and sophisticated laboratory equipment.		
Goals)	• An ability to approach and solve engineering problems in a		
	structured manner.		
	• Synthesis of knowledge from various sources to produce		
	creative, cost-effective designs for civil engineering facilities.		
	• A commitment to become registered as professional engineers.		
	• An ability to communicate effectively, both in written and oral		
	forms, as well as an ability to listen.		
	• A sensitivity to practice personal and professional ethics.		
	• A basic understanding of societal and environmental issues as		
	they affect engineering decisions		
Learning	After completing this course the student shall be able to		
Objectives	1- Explain principles of reinforced concrete mechanics		
	2- Design of concrete elements under flexural loads including		
	a- Determining the required amount of reinforcement		
	b- Check shear strength of concrete elements		
	c - Check deflection of concrete beams and slabs		
	d- Check development length		
	3- Design of reinforced concrete columns		
Assignments	- A list of all assignments and their due dates are listed below		
	The following rules apply to all assignments:		
	- All assignments represent 30% of the total course grade.		
	- Assignments shall be delivered by the due date or will be marked of		
	<u>a maximum of 50%.</u>		
	- Assignments delayed for <u>one week</u> from due date <u>will be rejected</u> .		
Expected	Students are expected to be familiar with computer programs for		
performance	structural analysis (e.g. SAP 2000). Students shall also get familiar		
	with engineering-programming such as MATLAB, MathCad and		
	Excel. Examples in these programs will be used.		

Grading	The grade of RC design represents 50% of CE310				
	Component		% Final Grade		
	Reinforced Conc	rete Assignments	15		
	Reinforced Conc	rete Mid Term	15		
	Reinforced Conc	rete Final	20		
Tentative	Assignment	Due Date	Торіс		
Assignment	Assignment 1	Jan. 31, 2012	Introduction		
schedule	Assignment 2	Feb. 8, 2012	Flexure Design		
	Assignment 3	Feb. 15, 2012	Shear Design		
	Assignment 4	Feb. 28, 2012	Development Length		
	Assignment 5	March 4, 2012	Deflection Check		
	Assignment 6	March 8, 2012	Column Design		

CE 310 - RC Course Syllabus - Tentative Schedule

#	Date	Торіс	Textbook
1	January 17	Chapter 1: Introduction to RC Design	Ch. 1,2,3,R
2	January 18	Chapter 1: Introduction to RC Design	Ch. 1,2,3,R
3	January 19	Chapter 1: Introduction to RC Design	Ch. 1,2,3,R
4	January 24	Chapter 1: Introduction to RC Design	Ch. 1,2,3,R
5	January 25	Chapter 1: Introduction to RC Design	Ch. 1,2,3,R
6	January 26	Chapter 3: Design of Flexural RC section	Ch. 4,5
7	January 31	Chapter 3: Design of Flexural RC section	Ch. 4,5
8	February 1	Chapter 3: Design of Flexural RC section	Ch. 4,5
9	February 2	Chapter 4: Design of Flexural RC section	Ch. 4,5
10	February 7	Chapter 4: Shear Design of RC Sections	Ch. 6
11	February 8	Chapter 4: Shear Design of RC Sections	Ch. 6
12	February 9	Chapter 4: Shear Design of RC Sections	Ch. 6
	February 14	RC MID-TERM (15 % of Total Grade)	
13	February 15	Chapter 5: Development length	Ch. 8
14	February 16	Chapter 5: Development length	Ch. 8
15	February 21	Chapter 6: Concrete Deflection	Ch. 9
16	February 22	Chapter 6: Concrete Deflection	Ch. 9
17	February 23	Chapter 6: Concrete Deflection	Ch. 9
18	February 28	Chapter 6: Concrete Deflection	Ch. 9
19	February 29	Chapter 7: Design of RC columns	Ch. 11
20	February 1	Chapter 7: Design of RC columns	Ch. 11
21	March 6	Chapter 7: Design of RC columns	Ch. 11
22	March 7	Chapter 7: Design of RC columns	Ch. 11
23	March 8	RC FINAL EXAM (20 % of Total Grade)	
	March 11-18	SPRING BREAK	
	March 20	Starting Second Half: Design of Structural Steel	
		Dr. Walter Gerstle	

• R-- Indicates other references provided by instructor in addition to textbook